Non Hyperbolicity in Random Regular Graphs and their Traffic Characteristics
نویسنده
چکیده
In this paper we prove that random d–regular graphs with d ≥ 3 have traffic congestion of the order O(n logd−1(n)) where n is the number of nodes and geodesic routing is used. We also show that these graphs are not asymptotically δ–hyperbolic for any non–negative δ almost surely as n→∞.
منابع مشابه
Lack of Hyperbolicity in Asymptotic Erdös-Renyi Sparse Random Graphs
In this work, we prove that the giant component of the Erdös–Renyi random graph G(n, c/n) for c a constant greater than 1 (sparse regime), is not Gromov δ–hyperbolic for any δ with probability tending to one as n → ∞. We present numerical evidence to show that the “fat” triangles that rule out δ–hyperbolicity are in fact abundant in these graphs. We also present numerical evidence showing that,...
متن کاملRandom Regular Graphs are not Asymptotically Gromov Hyperbolic
In this paper we prove that random d–regular graphs with d ≥ 3 have traffic congestion of the order O(n log3d−1(n)) where n is the number of nodes and geodesic routing is used. We also show that these graphs are not asymptotically δ–hyperbolic for any non–negative δ almost surely as n→∞.
متن کاملTraffic Analysis in Random Delaunay Tessellations and Other Graphs
In this work we study the degree distribution, the maximum vertex and edge flow in non-uniform random Delaunay triangulations when geodesic routing is used. We also investigate the vertex and edge flow in Erdös-Renyi random graphs, geometric random graphs, expanders and random k–regular graphs. Moreover we show that adding a random matching to the original graph can considerably reduced the max...
متن کاملOn the Hyperbolicity of Small-World and Tree-Like Random Graphs
Hyperbolicity is a property of a graph that may be viewed as being a “soft” version of a tree, and recent empirical and theoretical work has suggested that many graphs arising in Internet and related data applications have hyperbolic properties. Here, we consider Gromov’s notion of δ-hyperbolicity, and we establish several positive and negative results for small-world and tree-like random graph...
متن کاملD-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
متن کامل